A Deterministic Inverse Method for SST Retrieval from VIIRS: Incorporating Aerosol in the Retrieval Vector

Research: Prabhat Koner

PI: Andy Harris

CICS, ESSIC, University of Maryland

Physical Retrieval - Recap

- Reduces the problem to a local linearization
 - Dependent on ancillary data (NWP) for an initial guess
 - More compute-intensive than regression not an issue nowadays
 Especially with fast RTM (e.g. CRTM)
- Widely used for satellite sounding
 - More channels, generally fewer (larger) footprints
- Initially, started with a simple reduced state vector
 - $-x = [SST, TCWV]^T$
 - N.B. Implicitly assumes NWP profile shape is more or less correct
- Selection of an appropriate inverse method
 - Ensure that satellite measurements are contributing to signal
 - Avoid excessive error propagation from measurement space to parameter space
 - ➤ If problem is ill-conditioned

History of Inverse Model

Forward model: Y = KX

• Simple Inverse: $X = K^{-1}Y$ (measurement error)

Legendre (1805) Least Squares:

$$\mathbf{X} = \mathbf{X}_{ig} + (\mathbf{K}^{\mathrm{T}}\mathbf{K})^{-1}\mathbf{K}^{\mathrm{T}}(\mathbf{Y}_{\delta} - \mathbf{Y}_{ig})$$

• MTLS:
$$\mathbf{X} = \mathbf{X}_{ig} + (\mathbf{K}^{\mathrm{T}}\mathbf{K} + \lambda \mathbf{R})^{-1}\mathbf{K}^{\mathrm{T}}(\mathbf{Y}_{\delta} - \mathbf{Y}_{ig})$$

• OEM:
$$X = X_a + (K^T S_e^{-1} K + S_a^{-1})^{-1} K^T S_e^{-1} (Y_\delta - Y_a)$$

Uncertainty Estimation

Physical retrieval

Normal LSQ Eqn: $\Delta x = (K^TK)^{-1}K^T\Delta y \quad [= G\Delta y]$

MTLS modifies gain: $G' = (K^TK + \lambda I)^{-1}K^T$

Regularization strength: $\lambda = (2 \log(\kappa)/||\Delta y||)\sigma_{\text{end}}^2$

 $(\sigma_{end}^2 = lowest singular value of [K \Delta y])$

Total Error

$$||e|| = ||(MRM - I)\Delta x|| + ||G'||\langle ||(\Delta y - K\Delta x)||\rangle$$

N.B. Includes TCWV as well as SST

DFS/DFR and Retrieval error

- ☐ Retrieval error of OEM higher than LS
- More than 75% OEM retrievals are degraded w.r.t. a priori error
- □ DFR of MTLS is high when *a priori*error is high

 NASA MODIS-VIIRS ST Meeting, June 6 10, 2016

"Optimized" OE

 σ^2 is an overestimate...

...or an underestimate

- Perform experiment insert "true" SST error into S_a⁻¹
 - Can only be done when truth is known, e.g. with matchup data

DFS/DFR and Retrieval error

- ☐ More than 75% OEM retrievals are degraded w.r.t. a priori error
- ☐ DFR of MTLS is high when a priori error is high

□ Retrieval error of OEM higher than LS □ The retrieval error of OEM is good when a priori SST is perfectly known, but DFS of OEM is much lower than for MTLS

Improved cloud detection

- Use a combination of spectral differences and RT
 - Envelope of physically reasonable clear-sky conditions
- Spatial coherence (3×3)
- Also check consistency of single-channel retrievals
- Flag excessive TCWV adjustment & large MTLS error
- Increased coverage w.r.t. GHRSST QL3+, but with reduced cloud leakage
 - Prabhat's talk in yesterday's Oceans Breakout
 - ~50% increase in coverage & ~50% reduction in error

VIIRS Initial Results

Data are ordered according to MTLS error

- Reliable guide for regression as well as MTLS
- Trend of initial guess error is expected

MODIS experiments

- Channel selection
 - Test various combinations and look at accuracy of retrieval

- RTM may be inadequate for some channels
 bias
- Channels 1, 3, & 13 are particularly useful

Addition of aerosol

Put aerosol information in the CRTM

- NGAC profiles, multiple species (dust, salt, sulfate, soot)
- Improve match of RTM to observation
- Does this improve retrieval?

Put aerosol in the retrieval vector

- Allow Total Column Aerosol to vary
- $x = [SST, WV, TCA]^T$
- Jacobian now includes ∂T/∂TCA for each channel
- Does this improve retrieval?

MTLS developed for 2-parameter retrieval

 Try different regularization operator since problem is now more illconditioned: Truncated Total Least Squares (TTLS)

$$|\Delta \mathbf{y}| \le 1$$
: $\lambda = (\sigma_{\text{end-1}})^2$ $|\Delta \mathbf{y}| > 1$: $\lambda = (\sigma_{\text{end-1}}/\log(|\Delta \mathbf{y}|))^2$

Inclusion of aerosol

- Accuracy with TTLS & joint [SST, WV, TCA] ~0.2 K
- Algorithm sensitivity is also improved cf. MTLS

Summary

- Addition of aerosol has significant benefit
 - Most of all when included in retrieval vector as well as CRTM
- Better partitioning of brightness temperature residuals
 - No longer forcing delta-BTs caused by aerosol into the SST and/or WV retrieval space
 - Also improves algorithm sensitivity to SST (better overall fit to model)
- TTLS better choice for 3-parameter retrieval
 - Initial "tuning" with MODIS works well
 - Adaptation to VIIRS channels underway
- Validation results are approaching buoy accuracy limit
 - Best ~50% of retrievals at 0.2 K
 - Implies actual retrieval accuracy is better than this
- Need to consider what might be needed @SIPS
 - Full aerosol profiles as well as NWP

Backup slides

Improvements

- It seems "obvious" that a sensitivity of 1 is desirable
 - E.g. if there is diurnal warming of 5 K, it will be observed in the data, and strong upwellings will be accurately observed, etc.
- However, there is a penalty to be paid
 - Ill-conditioned problem → noise propagates from measurement space to parameter space
 - Compromise is usually struck (e.g. minimum least squares result for training data in a regression algorithm)
- Regression algorithms may have sensitivity <1 for large regions
 - E.g. daytime algorithms in the tropics (diurnal warming!)
 - Causes bias if local atmospheric conditions are different from the ensemble mean for the training data

MODIS Initial Results

- Note improvement from discarding MTLS error "last bin"
 - Irrespective, MTLS is quite tolerant of cloud scheme
- Recalculated SST4 coefficients produce quite good results